Listeria monocytogenes Cytoplasmic Entry Induces Fetal Wastage by Disrupting Maternal Foxp3+ Regulatory T Cell-Sustained Fetal Tolerance
نویسندگان
چکیده
Although the intracellular bacterium Listeria monocytogenes has an established predilection for disseminated infection during pregnancy that often results in spontaneous abortion or stillbirth, the specific host-pathogen interaction that dictates these disastrous complications remain incompletely defined. Herein, we demonstrate systemic maternal Listeria infection during pregnancy fractures fetal tolerance and triggers fetal wastage in a dose-dependent fashion. Listeria was recovered from the majority of concepti after high-dose infection illustrating the potential for in utero invasion. Interestingly with reduced inocula, fetal wastage occurred without direct placental or fetal invasion, and instead paralleled reductions in maternal Foxp3(+) regulatory T cell suppressive potency with reciprocal expansion and activation of maternal fetal-specific effector T cells. Using mutants lacking virulence determinants required for in utero invasion, we establish Listeria cytoplasmic entry is essential for disrupting fetal tolerance that triggers maternal T cell-mediated fetal resorption. Thus, infection-induced reductions in maternal Foxp3(+) regulatory T cell suppression with ensuing disruptions in fetal tolerance play critical roles in pathogenesis of immune-mediated fetal wastage.
منابع مشابه
Cutting edge: committed Th1 CD4+ T cell differentiation blocks pregnancy-induced Foxp3 expression with antigen-specific fetal loss.
Pregnancy stimulates induced Foxp3 expression among maternal CD4(+) T cells with fetal specificity. Although sustained maternal regulatory CD4(+) T cell (Treg) expansion is essential for maintaining fetal tolerance during pregnancy, the necessity for Foxp3(+) cells with fetal specificity remains undefined. In this study, we demonstrate that mitigating Treg differentiation among maternal CD4(+) ...
متن کاملCXCR3 blockade protects against Listeria monocytogenes infection-induced fetal wastage.
Mammalian pregnancy requires protection against immunological rejection of the developing fetus bearing discordant paternal antigens. Immune evasion in this developmental context entails silenced expression of chemoattractant proteins (chemokines), thereby preventing harmful immune cells from penetrating the maternal-fetal interface. Here, we demonstrate that fetal wastage triggered by prenatal...
متن کاملFoxp3+ regulatory T cells impede the priming of protective CD8+ T cells.
T cell activation is controlled by incompletely defined opposing stimulation and suppression signals that together sustain the balance between optimal host defense against infection and peripheral tolerance. In this article, we explore the impacts of Foxp3(+) regulatory T cell (Treg) suppression in priming Ag-specific T cell activation under conditions of noninfection and infection. We find the...
متن کاملGrowth of Listeria monocytogenes in the guinea pig placenta and role of cell-to-cell spread in fetal infection.
Listeria monocytogenes causes foodborne outbreaks that lead to infection in human and other mammalian fetuses. To elucidate the molecular and cellular mechanisms involved in transplacental transmission, we characterized placental-fetal infection in pregnant guinea pigs inoculated with wild-type (wt) or mutant L. monocytogenes strains. The wt strain increased in number in the placenta by >1000-f...
متن کاملPlacental Syncytiotrophoblast Constitutes a Major Barrier to Vertical Transmission of Listeria monocytogenes
Listeria monocytogenes is an important cause of maternal-fetal infections and serves as a model organism to study these important but poorly understood events. L. monocytogenes can infect non-phagocytic cells by two means: direct invasion and cell-to-cell spread. The relative contribution of each method to placental infection is controversial, as is the anatomical site of invasion. Here, we rep...
متن کامل